Menofia University Faculty of Engineering Shebien El-kom Basic Engineering Sci. Department. Academic Year : 2016-2017 Date : 7/6/2017

Subject: Engineering Mechanics -Code: BES 714 Time Allowed: 3 hours Year: Doctor Total Marks: 100 Marks

Answer all the following questions: [100 Marks]

Crank CB rotates about the horizontal axis with an [20] Q.1angular velocity $\omega_1 = 6$ rad/sec which is constant for a short interval of motion which includes the position shown. The link AB has a ball-and-socket 100 mm fitting on each end and connects crank DA with CB. For the instant shown, Determine 100 mm 1) The angular velocity ω_2 of crank DA 2) The angular velocity ω_n of link AB. 100 mm 3) The angular acceleration of crank AD in for the B conditions cited. 4) Find the angular acceleration of link AB. [20] The uniform rectangular block of dimensions shown Q.2 is sliding to the left on the horizontal surface with a velocity v_1 when it strikes the small step at 0. Assume negligible rebound at the step and compute the minimum value of $v_1\,$ which will permit the block to pivot freely about 0 and just reach the standing position A with no velocity. Compute the percentage energy loss n for b = c.

Q.	3 A car door is inadvertently left slightly open when the	[15]
	brakes are applied to give the car a constant rearward	
	acceleration a. Derive expressions for the angular	<u>u</u>
	velocity of the door as it swings past the 90° position	
	and the components of the hinge reactions for any	0
	value of θ . The mass of the door is m, its mass center is	0 - L-
	a distance from the hinge axis O, and the radius of	
	gyration about O is k_o .	
Q.4	The block of weight W is connected in a rigid frame	[15]
	between a linear spring and a viscous damper. The frame	
	is subjected to the time-dependent vertical	$y = y_{\sin \omega t}$
	displacement $y(t) = Y \sin \omega t$. The displacement x of the	
	block is measured from its static equilibrium position	
	(with support stationary at $y = 0$).	
	Determine the steady state solution for	, ,
	1) The relative displacement $z = x - y$;	
	2) The absolute displacement <i>x</i> .	
	$\underline{\text{Use}}: Y = 40 \text{ mm}, \omega = 400 \frac{\text{rad}}{\text{s}}, M = 3 \text{ kg},$	
	$k = 2.63 \times 10^5 \frac{N}{m}$ and $c = 585 N. s/m$.	
Q.5	The cantilever beam is subjected to the load intensity	[15]
	(force per unit length) which varies as	$\frac{1}{2}$
	$w = w_o \sin (x/l)$. Determine the shear force V and	
	bending moment <i>M</i> as functions of the ratio x/l .	

Q.6 Determine the range of mass m over which the system is in static equilibrium. The coefficient of static friction between the cord and the upper $9 \text{ kg}_{L/3}$ 30° $1 \text{ kg}_{L/3}$ 30°

			This exam	measures th	ne following IL	Os		
Question Number	Q1-a	Q1-b	Q3-b	Q4-a	Q1-c	Q2-a	Q3-a	Q4-c
	Q4-b				Q2-b	Q2-c	Q3-c	
Knowledge &understanding skills				Intellectual Skills		Professional Skills		

With our best wishes

Dr. Ramzy M. Abumandour

[15]

a = 0.40

 $\theta = 40$