Menofia University	Subject: Engineering Mechanics	
Faculty of Engineering Shebien El-kom	Code: BES 714	
Basic Engineering Sci. Department.	Time Allowed: 3 hours	
Academic Year: 2016-2017		Year: Doctor
Date: $7 / 6 / 2017$		Total Marks: 100 Marks

Answer all the following questions: [100 Marks]
Q. 1 Crank CB rotates about the horizontal axis with an
angular velocity $\omega_{1}=6 \mathrm{rad} / \mathrm{sec}$ which is constant for a short interval of motion which includes the position shown. The link $A B$ has a ball-and-socket fitting on each end and connects crank DA with CB. For the instant shown, Determine

1) The angular velocity ω_{2} of crank $D A$
2) The angular velocity ω_{n} of link $A B$.
3) The angular acceleration of crank $A D$ in for the
 conditions cited.
4) Find the angular acceleration of link $A B$.
Q. 2 The uniform rectangular block of dimensions shown is sliding to the left on the horizontal surface with a velocity v_{1} when it strikes the small step at 0 . Assume negligible rebound at the step and compute the minimum value of v_{1} which will permit the block
 to pivot freely about 0 and just reach the standing position A with no velocity. Compute the percentage energy loss n for $b=c$.
Q. 3 A car door is inadvertently left slightly open when the brakes are applied to give the car a constant rearward acceleration a. Derive expressions for the angular velocity of the door as it swings past the 90° position and the components of the hinge reactions for any value of θ. The mass of the door is m, its mass center is
 a distance from the hinge axis O, and the radius of gyration about O is k_{0}.
Q. 4 The block of weight W is connected in a rigid frame between a linear spring and a viscous damper. The frame is subjected to the time-dependent vertical displacement $y(t)=Y \sin \omega t$. The displacement x of the block is measured from its static equilibrium position (with support stationary at $y=0$).

Determine the steady state solution for

1) The relative displacement $z=x-y$;
2) The absolute displacement x.

Use: $Y=40 \mathrm{~mm}, \omega=400 \frac{\mathrm{rad}}{\mathrm{s}}, M=3 \mathrm{~kg}$,
$k=2.63 \times 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}}$ and $c=585 \mathrm{~N} . \mathrm{s} / \mathrm{m}$.
Q. 5 The cantilever beam is subjected to the load intensity (force per unit length) which varies as $w=w_{o} \sin (x / l)$. Determine the shear force V and bending moment M as functions of the ratio x / l.
Q. 6 Determine the range of mass m over which the system is in static equilibrium. The coefficient of static friction between the cord and the upper curved surface is 0.20 , while that between the block and the incline is 0.40 . Neglect friction at
 the pivot 0 .

This exam measures the following ILOS											
Question Number	Q1-a	Q1-b	Q3-b	Q4-a	Q1-c	Q2-a	Q3-a	Q4-c			
	Q4-b				Q2-b	Q2-c	Q3-c				
	Knowledge \&understanding skills									Intellectual Skills	Professional Skills

With our best wishes

Dr. Ramzy M. Abumandour

